Go to www.awrcorp.com
Back to search page Click to download printable version of this guide.

Phase Spec: Floating Shield (Closed Form): TLIN4



TLIN4 simulates a transmission line with isolated ground terminals. The characteristics of the transmission line are specified as the characteristic impedance and the electrical length at a given frequency. Extreme care should be used with this element as it is meant to work in concert with additional elements which relate the voltages at both ends of the transmission line to the global ground. Unusual and unexpected behavior can result if these additional elements are omitted.

Equivalent Circuit

Note that any interaction with the ground on either side of the transmission line is ignored. All current on one conductor is equal and opposite to the current on the other at any given distance along the line. Importantly, this condition is enforced regardless of the length of the transmission line or the operating frequency. The exception to this behavior is at DC (Frequency = 0 Hz) where current on the two conductors can be unequal to allow both conductors to be used for biasing active devices. This change in behavior at DC causes a discontinuity of the model parameters at DC. This discontinuity is expected, and additional circuit components relating the voltage at each end of the transmission line to ground should be added, allowing flexibility in implementing the desired transition to the RF-to-DC performance.


Name Description Unit Type Default
ID Name Text TL1
Z0 Transmission line impedance Resistance 50 ohm
EL Electrical length (phase length) at F0 Angle 90 Deg
F0 Frequency used to specify EL Frequency 10 GHz

Parameter Details

EL and F0. These parameters determine the frequency dependence of the electrical length of the line, described as βL=EL· freq/Fo · π/180 where freq is the evaluation frequency.

Implementation Details

The following is a Y-matrix for a grounded transmission line system:

where β represents the propagation constant, Z is the characteristic impedance of the line and L is the length of the line as derived from the input parameters.

Applying the equivalent circuit shown above, the Y-matrix of the floating transmission line system can be shown to be the following:

At DC, the Y-Matrix changes to a model of two wires above a ground plane:

where R is a real resistance approaching zero.


This element does not have an assigned layout cell. You can assign artwork cells to any element. See “Assigning Artwork Cells to Layout of Schematic Elements” for details.

Recommendations for Use

This model, along with additional components can be used to model transmission line baluns and transmission line transformers in which one of the conductors is shielded from ground, like in a coaxial line.

NOTE: Because the model definition does not include interactions with the ground, unusual and unexpected results can occur if other components are not used to relate the voltage on both sides of the transmission line to ground.

Legal and Trademark Notice